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1 Statement of the Problem Studied

The primary goal of this research was to develop representations, models, and algorithms for use
in Bayesian automated recognition of objects from their images. Despite focused efforts in the area
of image understanding in recent years, a fresh look was needed to highlight the progress and the
limitations. Our research was focused along the following three broad themes: (i) development
of efficient representations of the objects of interest (or their images) using nonlinear manifolds,
(ii) development of parametric probability models for capturing object and clutter variability, and
(iii) development of algorithms for solving inference problems on nonlinear manifolds that arise in
object recognition. Next we state the specific problems studied under these three topis.

Although many of these problems are of interest in Army applications, we have mainly utilized
public domain data to conduct experiments. Our access to military data was very limited. (One
exception is the IR sequences provided by Dr. Richard Sims of AMCOM). We have involved
databases such as ORL and FERET for face recognition, COIL for object recognition, Equinox
dataset for IR face recognition, our Minolta vivid700 for range image analysis, van Hataren natural
image database for image modeling, and so on.

1.1 Representations and Analysis of Image Manifolds

In the space of rectangular arrays of positive numbers, only a small subset has images of interesting
scenes. One seeks to isolate and characterize this subset for use in image analysis applications.
The main idea is to identify this set as a low-dimensional, differentiable manifold and use its
geometry to characterize images. Having defined this manifold, a simplistic probability model can
help capture the image variability. We have sought efficient representations of the image manifolds
containing images of objects of interest. There are two possible situations: (i) we know the 3D
models of the objects of interest beforehand and are interested in estimating the parameters, such
as pose, location, state, motion, etc, of their occurrences in a scene, or (ii) we only have some prior
observations of the objects’ appearances (as images) and want to recognize these objects from their
future observations. In the first case, we adopt tools from deformable template theory and denote
occurrence variables as elements of groups which act on the object template (e.g. pose is modeled
by the rotation and translation group SE(3)). In this setup, object recognition becomes a problem
in hypothesis selection in presence of nuisance parameters [6]. (Our previous work [4] tackles a
related problem of estimating the group elements, and analyzing the estimation performance using
error bounds.)

Goal 1 Treating the problem of object recognition as hypothesis testing in presence of nuisance
parameters, how to characterize the performance of Bayesian recognition algorothms?

The second possibility is that our knowledge of image manifold is restricted to past observations
(images) of the objects. Perhaps the easiest technique to approximate the image manifold is to fit a
linear subspace through the observations. The fitting criterion will specify the precise subspace that
is selected. Many such subspaces have been suggested including PCA, ICA, FDA, non-negative
factorization, sparse bases, and their improvements [8, 3, 2, 26, 17, 1, 11]. Simplicity of these linear
representations makes them a popular tool in imaging analysis. Two widely used classes of linear
representations are dimension reduction subspaces and linear spectral filters. We addressed the
following problem:

Goal 2 In the context of a specific application, such as object recognition or image database re-
trieval, what are the optimal linear representations of images? Demonstrate the advantages of this
approach in a variety of applications using public databases.
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1.2 Probability Models Capturing Object and Clutter Variability

Statistical techniques for image analysis and understanding require efficient and tractable probabil-
ity models for analyzing the observed images. Given the tremendous variability associated with the
imaged objects, detailed (e.g. 3D deformable templates) models are not feasible for “all possible
objects”. Therefore, one seeks a balance by designing low-level, coarse representations that are
tractable and yet capture significant image variation. We have developed a family of tractable,
coarse probability models that can form building blocks of a larger image understanding system.
Since the image space is very high-dimensional, a direct modeling of the joint probabilities is not
possible, even if a large number of observations are provided, and some method for reducing dimen-
sions is required. Motivated by a growing understanding of early human vision, a popular strategy
has been to decompose images into their spectral components using a family of bandpass filters.
Following that idea, our definition of a probability model on images is through its spectral rep-
resentation. If certain low-dimensional statistics of these filtered components are found sufficient,
then a significant reduction is achieved. It has been shown that spectral components of images
have marginals that are: (i) unimodal, (ii) symmetric around the mode, and (iii) are leptokurtic,
i.e. their kurtosis are more than that of a Gaussian random variable with the same variance.

Goal 3 Derive an analytical model that explains and captures this non-Gaussian statistics of the
observed images. Demonstrate the use of this model in applications such as texture synthesis, clutter
classification, and object recognition.

1.3 Algorithms for Inferences on Image Manifolds

Many problems in signal and image processing can be efficiently stated and solved on nonlinear
manifolds. Here are some examples: subspace tracking in signal processing can be studied as a
problem of nonlinear filtering on a Grassmann manifold, estimating pose of a target using images
is an estimation problem on the rotation group, finding optimal linear projection of images for
retrieval is an optimization problem on Grassmann manifold, analysis of shapes of planar objects is
an inference problem on a nonlinear shape manifold, and so on. However, these approaches require
dealing with the geometry of nonlinear manifolds, spaces for which the commonly used tools (for
representation, optimization, random sampling, and hypothesis testing) are not frequently available.

Goal 4 Develop mathematical formulations, optimization strategies, statistical procedures, and pro-
gramming code to study problems of statistical inferences on nonlinear manifolds.

In particular, the problem of statistical analysis of shapes deserve a separate mention. For an-
alyzing shapes of planar, closed curves, we have proposed differential geometric representations
of curves using their direction functions and curvature functions. Shapes are represented as ele-
ments of infinite-dimensional spaces and their pairwise differences are quantified using the lengths
of geodesics connecting them on these spaces. Our research focused on addressing the following
questions:

Goal 5 How to define and compute geodesic paths on these shape spaces? How to define and
compute statistics, such as means and covariances, from probability models on shapes spaces?

2 Summary of the Most Important Results

In this section we summarize our progress towards these five goals and related areas.
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1. Statistical Modeling of Images & Their Applications: Seeking probability models for
images, we employed a spectral approach where the images are decomposed using bandpass
filters, and probability models are imposed on the filter outputs (also called spectral compo-
nents). We have derived a (two-parameter) family of probability densities [5], named Bessel
K forms, for modeling the marginal densities of the spectral components, and have demon-
strated their fit to the observed histograms for video, infrared, and range images. The density
function associated with the linear representations of images is been shown to be [5, 23]: for
p > 0, c > 0,

f(x; p, c) =
1

Z(p, c)
|x|p−0.5K(p−0.5)(

√
2
c
|x|) , x ∈ IR , (1)

where K is the modified Bessel function of third kind and Z is the normalizing constant given
by Z(p, c) =

√
πΓ(p)(2c)0.5p+0.25. The two parameters p and c can be estimated using the

equations:

p̂ =
3

SK(I(j))− 3
, ĉ =

SV(I(j))
p̂

, (2)

where SK is the sample kurtosis and SV is the sample variance of the pixel values in I(j).
Here, I(j) denotes the image I filtered by the filter F (j). Shown in the top panels of Figure
1 are some images taken from the van Hateren [25] database. The middle panels display
their specific filtered forms (or spectral components) for Gabor filters at arbitrarily chosen
orientations and scales, and the bottom panels plot the marginal densities. On a log scale, the
observed densities (histograms) are plotted in the marked (knotted) lines and the estimated
Bessel K forms (f(x; p̂, ĉ)) are plotted in the solid lines. Motivated by object-based models
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Figure 1: Images (top panels), their Gabor components (middle panels), and the marginal densities
(bottom panels). The observed densities are drawn in marked lines and the estimated Bessel K
forms are drawn in solid lines.

for image analysis, a relationship between the Bessel parameters and the imaged objects is
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also established. Using L2-metric on the set of Bessel K forms, we have proposed a pseudo-
metric on the image space for quantifying image similarities/differences. Some applications,
including clutter classification and pruning of hypotheses for target recognition, are presented
in [23]. This research was performed in collaboration with Prof. Ulf Grenander of Brown
University and Prof. Xiuwen Liu of FSU.

We have also presented a survey of the advances made in statistical modeling of images in a
recent article [21]. Starting from early Fourier-based techniques to more recent non-Gaussian
statistical models for wavelet coefficients of images, we summarize progress in modeling the
statistical behavior of images and applications of such models.

2. Statistical Analysis of Planar Shapes: For analyzing shapes of planar, closed curves, we
have proposed differential geometric representations of curves using their direction functions
and curvature functions. Shapes are represented as elements of infinite-dimensional spaces
and their pairwise differences are quantified using the lengths of geodesics connecting them
on these spaces. We have used a Fourier basis to represent tangents to the shape spaces
and then used a gradient-based shooting method to solve for the tangent that connects any
two shapes via a geodesic. Using the Surrey fish database, we have demonstrated some
applications of this approach: (i) interpolation and extrapolations of shape changes, (ii)
clustering and recognition of objects according to their shapes, and (iii) statistical analysis of
shapes including computation of intrinsic means and covariances. These results are presented
in the papers [10, 9, 20]. As illustration, shown in Figure 2 are two examples of geodesics
between shapes on the left and the target shapes on the right. Drawn in between are shapes
denoting equally spaced points along the geodesic paths. There are several reasons for finding
geodesic paths between shapes. Firstly, the lengths of these geodesics provide a quantification
of the differences between any pair of given shapes. Secondly, the shapes along the geodesic
paths can be used to interpolate between the shapes, and more interestingly, help define
average shapes. Furthermore, this helps in computing statistics from any probability model
on such shape spaces.

0 2 4 6 8 10 12
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1

2

0 2 4 6 8 10 12
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Figure 2: Examples of evolving one shape into another via geodesic paths.

In addition to computing geodesic paths and geodesic lengths for quantifying shape differ-
ences, we have also derived a framework for statistical inferences on the nonlinear, infinite-
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dimensional shape space. Using the notion of Karcher means, we have derived an algorithm
for computing mean shapes and shape covariances. Shown in Figure 3 are two examples of
computing the Karcher mean shapes: the left four panels show the sample shapes and the
rightmost panels display the corresponding mean shapes. More examples have been presented
in [10, 9, 20].
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Figure 3: Karcher means (right panels) of the four shapes given in left panels for each row.

The methodology developed for analyzing planar shapes can also be deployed in other appli-
cations. Many applications in signal processing, image analysis, and computer vision require
tools for “interpolating” between points on some differentiable manifold. As for example, in
the problem of recognizing objects in given images, extraction and use of edges/boundaries
present in the images play an important role. In case the objects of interest are partially
obscured by other objects, the edges are visible only partially, and an important task is to
interpolate between the observed edges using information from the observed portions. Let
α: [a, b] → Rn be a smooth curve parametrized by arc length, i.e., satisfying ‖α′(s)‖ = 1,
for every s. The curvature of α at s is given by κ(s) = ‖α′′(s)‖ and the elastic energy E

of α is defined by E(α) = 1
2

∫ b
a κ2(s)ds. Given the end points and the end directions, we

have derived algorithms for finding curves that satisfy the boundary conditions, and have the
smallest elastic energy amongst all such curves [16]. Shown in Figure 4 are some examples of
using elastic curves in discovering hidden edges of partially obscured objects.

3. Stochastic Search for Optimal Linear Representations: Simplicity of linear represen-
tations (of images) makes them a popular tool in imaging analysis applications such as object
recognition and image classification. Although several linear representations, namely PCA,
ICA, and FDA, have frequently been used, these representations are generally far from opti-
mal in terms of actual application performance. We have argued that representations should
be chosen with respect to the application and the databases involved. Fixing an application,
say object recognition, and assuming that recognition performance is computable for any
linear basis (given a classifier and a database), we have proposed a Monte Carlo simulated
annealing method that leads to optimal linear representations by maximizing the recognition
performance over the space of all subspaces [12, 14, 15, 13]. Let n be the dimension of image
space and we are interested in finding an optimal d (with d << n) dimensional subspace of
Rn that maximizes the recognition performance in the subspace. Let Gn,d be the Grassmann
manifold of all d-dimensional subspaces of Rn and F : Gn,d 7→ R+ denote the recognition
performance. Using a Monte Carlo based stochastic search we find U∗ ∈ Gn,d that maximizes
F . We have illustrated this method on several popular image databases (of faces, objects, tex-
tures, and natural images) and have demonstrated significant improvement over commonly
used linear representations. Shown in Figure 5 are some summary results using the ORL
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Figure 4: Example of using elastic curves to predict missing parts of edges of partially obscured
objects.

and the COIL databases, where the performance of our optimal subspaces is compared with
commonly used subspaces such as PCA, ICA, and FDA.

4. Recognition of Objects Using IR and Range Sensing: A major area of research in
military target recognition is multi-modality target recognition. Advent of cheap, hand-held
infrared and range sensors have enabled the use of these technologies in civilian applications
also. We have investigated the use of infrared and range sensing in identifying people from
their multi-modal images.

(a) Face Recognition Using IR Images: A Bayesian approach to identifying faces from their
IR facial images amounts to testing of discrete hypotheses in presence of nuisance vari-
ables such as pose, facial expression, and thermal state. We have proposed an efficient,
low-level technique for hypothesis pruning, i.e. short-listing high probability subjects,
from given observed image(s) [22]. (This subset can be further tested using some de-
tailed high-level model for eventual identification). Hypothesis pruning is accomplished
using wavelet decompositions (of the observed images) followed by analysis of lower-order
statistics of the coefficients. Specifically, we filter infrared (IR) images using bandpass
filters and model the marginal densities of the outputs via a parametric family, Bessel
K-forms, that was introduced in [5]. IR images are compared using an L2-metric com-
puted directly from the parameters. Results from experiments on IR face identification
and statistical pruning are presented in [22, 24]. Some example images of the IR face
images used in the experiment are shown in Figure 7.
Here is a tabulation of the face recognition performance using our Bessel K parametric
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Figure 5: The performance of different linear subspaces with respect to the dimensionality and the
number of training images on the ORL and COIL-20 dataset. Here solid line is for optimal subspace
found using our algorithm, dashed line is for FDA, dotted line is for PCA, and dash-dotted line is
for ICA. (a) The performance versus d with ktrain = 5 on the ORL dataset. (b) The performance
versus ktrain with d = 5 on the ORL dataset. (c) The performance versus d with ktrain = 8 on the
COIL dataset.

models, compared with some standard techniques used in image-based face recognition.

Recognition performance of PCA, ICA, and Bessel K forms
Correct to be the closest

Test/training Eigen Independent Bessel
ratio faces faces forms
1:1 90.48% 89.52% 97.14%
3:1 87.42% 88.05% 91.20%
7:1 80.21% 70.05% 83.96%

Correct within the closest two
Test/training Eigen Independent Bessel

ratio faces faces forms
1:1 94.29% 96.19% 99.05%
3:1 92.45% 91.20% 96.23%
7:1 87.70% 83.42% 91.98%

(b) Face Recognition Using Range Images: In this paper we consider the problem of
recognizing people from their range images. The first task is to generate range images,
also called height maps, of faces using observations from 3D scanners. Once the range
images are generated, they need to be aligned in order to compare different range images.
We perform this alignment using spatial features such as nose, bridge of the nose, etc.
Aligned images are elements of a high dimensional image space. Since our technique
for face recognition is statistical, we reduce the dimension of the image space using any
standard linear projection such as PCA or an optimal projection found as described
earlier. Probability models are imposed on the projected coefficients. Shown in Figure
8 are six examples of registered face images: top panels show images of different people
and bottom panels show images of a person’s face under three different facial expressions.
For comparing different faces, we impose a metric on the space of coefficients. Using the
Euclidean metric, we have found a reasonable success in recognizing people from their
range images. Currently we are working on extending our database to include range
images of hundreds of people, each with several different facial expressions. For details
on this experiment, please refer to the report [7].

5. Statistical Inferences on Certain Manifolds & Applications: Monte Carlo (MC) meth-
ods have become an important tool for inferences in non-Gaussian and non-Euclidean settings.
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(a)

(b)

Figure 6: Query examples on the retrieval dataset from the University of Washington using the
learned optimal representation. Here R = 5. In each subfigure, the top left image is the query
image and the rest are retrieved images ordered by similarity from left to right and top to bottom.

We have studied the use of MC methods in those signal/image processing scenarios where the
parameter spaces are certain Riemannian manifolds (finite-dimensional Lie groups and their
quotient sets). We have investigated the estimation of means and variances, of the manifold-
valued parameters, using two popular sampling methods: independent and importance sam-
pling. Using Euclidean embeddings, we specified the notions of extrinsic and intrinsic means,
employed Monte Carlo methods (independent and importance sampling) to estimate these
means, and utilized large-sample asymptotics to approximate the estimator covariances. We
have used the problems in target pose estimation [4] (orthogonal groups), signal subspace
estimation [19] (Grassmann manifolds) and statistical analysis of planar shapes [10] as are
our motivations for this work. Asymptotic covariances are utilized to construct confidence
regions, to compare estimators, and to determine the sample size for MC methods [18].

6. Asymptotic Performance Analysis of Bayesian ATR: We have investigated the asymp-
totic performance of Bayesian target recognition algorithms using deformable-template rep-
resentations. Rigid CAD-models represent the underlying targets; low-dimensional matrix
Lie-groups extend them to particular instances. Remote sensors observing the targets are
modeled as projective transformations, converting three-dimensional scenes into random im-
ages. Bayesian target recognition corresponds to hypothesis selection in the presence of
nuisance parameters; its performance is quantified as the Bayes’ error. Analytical expressions
for this error probability in small noise situations are derived, yielding asymptotic error rates
for exponential error probability decay.
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Figure 7: Example images from FSU IR face database.

For an observed image ID, the recognition problem is to decide which target α ∈ A best
describes that ID. Associate with each target αi ∈ A, a hypothesis Hi which selects αi as
the best match. H0 is the null hypothesis signifying that no target is present. A Bayesian
approach is to solve a series of binary likelihood-ratio tests:

P (Hi|ID)
P (Hj |ID)

>
< 1 or equivalently, Lij(ID) =

p(ID|Hi)
p(ID|Hj)

>
<

P (Hj)
P (Hi)

≡ νij . (3)

The likelihood of ID given that a target αi is present is

p(ID|Hi) =
1

Z(σ)

∫

S
exp{− 1

2σ2
Eαi(s, σ)}p(s|Hi)γ(ds) , (4)

where p(s|Hi) is the prior density on the parameter space S associated with the target αi

(hypothesis Hi). Eαi denotes the likelihood energy for the candidate target αi.

Under some simplifying assumptions, and assuming H0 is the true hypothesis, the probability
of selecting H1 is now reduced to evaluating Pr{z > κ} where

κ = β log(ν)− β

2
log

det(Ë0(s0, 0))
det(Ë1(s1, 0))

+
1
2β

, β =
σ√

l21 + l20 − 2ρ
. (5)

Theorem 1 In the asymptotic situation that the noise standard deviation σ → 0, the proba-
bility of type-I error (selecting H1 when H0 is true with parameter s0) is given by

1√
2πκ

e−κ2/2 , (6)

where κ is given by (5).

For details of this result and other result relating to performance analysis in Bayesian target recog-
nition, please refer to the paper [6].

3 List of Publications and Technical Reports
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Figure 8: Top panels: face meshes (decimated for display) scanned from a 3D scanner. Bottom
panels: six examples of range images of faces.
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in Applied Probability, June 2000. (A. Srivastava and E. Klassen)

(b) Models for Statistical Analysis of Range Images, submitted to Journal of Advances in
Applied Probability, December 2001. (U. Grenander, A. Srivastava, and Curt Hesher).

(c) Optimal Linear Representations of Images for Object Recognition, in review at IEEE
Transactions of Pattern Analysis and Pattern Recognition, November 2002. (X. Liu and
A. Srivastava).

(d) Analysis of Planar Shapes using Geodesic Paths on Shape Spaces, in review at IEEE
Transactions on Pattern Analysis and Machine Intelligence, revised on March 2003.

4. Partial List of Papers published in Conference Proceedings

(a) Optimal Linear Representations of Images for Object Recognition, in Proceedings of
IEEE Conference on Computer Vision and Pattern Recognition, Madison, WI, June
2003. (X. Liu, A. Srivastava, and K. Gallivan).

(b) Integrated Learning of Linear Representations, in Proceedings of 2003 International Joint
Conference on Neural Networks, Portland, Oregon, July 2003. (X. Liu, A. Srivastava,
and D. Wang).

(c) On Intrinsic Generalization of Low Dimensional Representations of Images for Recogni-
tion, in Proceedings of 2003 International Joint Conference on Neural Networks, Port-
land, Oregon, July 2003. (X. Liu and A. Srivastava)

(d) Geometric Analysis of Continuous Planar Shapes, in Proceedings of Fourth International
Workshop on Energy Minimization Methods in Computer Vision and Pattern Recogni-
tion, Lisbon, Portugal, July 2003. (A. Srivastava, E. Klassen, W. Mio and S. Joshi).

(e) Stochastic Search for Optimal Linear Representations of Images on Grassmann Mani-
folds, in Proceedings of Fourth International Workshop on Energy Minimization Methods
in Computer Vision and Pattern Recognition, Lisbon, Portugal, July 2003. (X. Liu and
A. Srivastava).

(f) Geometric Analysis of Planar Shapes Using Geodesic Paths, in Proceedings of 35th An-
nual Asilomar Conference on Signals, Systems, and Computing, Asilomar, CA, Novem-
ber 2002. (A. Srivastava and E. Klassen).
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(g) Spaces and Subspaces of Images for Recognition, in Proceedings of the International
Conference on Image Processing, in press, Rochester, 2002. (with X. Liu).

(h) Analytical Image Models and Their Applications, in Proceedings of Seventh European
Conference on Computer Vision, in press, Copenhagen, May 2002. (with X. Liu and
U.Grenander).

(i) Principal Component Analysis of Range Images for Facial Recognition, Proceedings of
CISST, in press, Las Vegas, June 2002. (with C. Hesher and G. Erlebacher).

(j) Invited session: A Compact Probability Model for Natural Clutter, IEEE International
Conference on Image Processing, Thessaloniki, Greece, October 2001.

(k) Image Segmentation using Local Histograms, in Proceedings of IEEE International Con-
ference on Image Processing, volume 1, pages 70-73, Thessaloniki, Greece, October 2001.
(with X. Liu and D. Wang).

(l) Spectral Probability Models of IR Images with Applications to IR Face Recognition,
CVPR workshop on Computer Vision Beyond Visual Spectrum, Hawaii, December 2001.
(with X. Liu, B. Thomasson and C. Hesher).

(m) 3D Object Recognition using Mixture of Perceptual Components, in Proceedings of In-
ternational Joint Conference on Neural Networks, volume 1, pages 553-558, Washington,
July 2001. (with X. Liu).

(n) A Regression Model for Prediction of IR Images, in Proceedings Aerosense, volume 4379,
pages 176-186, Automatic Target Recognition XI, Firooz A. Sadjadi (Ed), Orlando, FL,
April 2001. (with B. Thomasson and S. R. F. Sims).

(o) Bayesian Filtering for Tracking Pose and Location of Rigid Targets, in Proceedings SPIE,
volume 4052, pages 160-171, Signal Processing, Sensor Fusion, and Target Recognition
IX, Ivan Kadar (Ed), Orlando, FL, April 2000.

(p) A nonlinear Filtering Method for Geometric Subspace Tracking, in Proceedings of IEEE
Sensor Array and Multichannel Processing workshop, Cambridge, MA, March 2000

The research performed under this contract was also presented at several meetings including
the Royal Statistical Society’s annual meeting in Glasgow, Scotland, AFOSR/AFRL Nonlin-
ear filtering/Tracking workshop in Dayton, Joint Statistical Meeting in Atlanta, International
Conference on Pattern Recognition in Washington, NSF Workshop on Pattern Classification
in Ann Arbor, and UFL Winter workshop on Classification in Gainesville.

4 Scientific Personnel Supported

This funding supported partial summer salary of the PI for three summers (1999, 2000, and 2001).
In addition, three graduate students, Wenji Pu, Brian Thomasson and Evgenia Rubenshtein, were
also supported on a half RA, half TA basis. Brian Thomasson finished his MS degree and is
currently an instructor of Statistics at North Florida Community College. Evegenia is currently
working on her phd in the area of statistical mideling of images.

While the PI was supported by this grant, he directed Lt. Col. Mick Smith (of US Army) on his
phd dissertation titled Bayesian Sensor Fusion for Inferences from Multi-Modal Data. Motivated
by the problems facing Army’s NVL, Mick has developed new statistical models for sensors such
as human scout and seismic recorder, and combined them with existing models for IR camera and
acoustic sensing, to produce a framework for unified inference. He is expected to finish his phd
degree in July 2003 and will join US Military Academy at Westpoint as an instructor in Statistics.
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This research was performed in collaboration with several researchers, none of whom was sup-
ported by this grant. Profs. Xiuwen Liu of Department of Computer Science and Ulf Grenander of
Brown University played an integral part in development of Bessel K forms, and their applications.
Prof. Liu also led the project on finding optimal linear representations of images for object recog-
nition and image retrieval. We collaborated with Profs. Eric Klassen and Washigton Mio, both of
Department of Mathematics, on the statistical analysis of planar shapes and elastic curves. Prof
Klassen also was instrumental in development of statistical inferences on nonlinear manifolds.

5 Report of Inventions

None.
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